Three-mass triangle integrals and single-valued polylogarithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feynman integrals and multiple polylogarithms

In this talk I review the connections between Feynman integrals and multiple polylogarithms. After an introductory section on loop integrals I discuss the Mellin-Barnes transformation and shuffle algebras. In a subsequent section multiple polylogarithms are introduced. Finally, I discuss how certain Feynman integrals evaluate to multiple polylogarithms.

متن کامل

Analytic Structure of Three-Mass Triangle Coefficients

“Three-mass triangles” are a class of integral functions appearing in oneloop gauge theory amplitudes. We discuss how the complex analytic properties and singularity structures of these amplitudes can be combined with generalised unitarity techniques to produce compact expressions for three-mass triangle coefficients. We present formulae for the N = 1 contributions to six and seven gluon scatte...

متن کامل

The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms

We introduce a generating function for the coefficients of the leading logarithmic BFKL Green’s function in transverse-momentum space, order by order in αS, in terms of single-valued harmonic polylogarithms. As an application, we exhibit fully analytic azimuthal-angle and transverse-momentum distributions for Mueller-Navelet jet cross sections at each order in αS. We also provide a generating f...

متن کامل

Vector-valued integrals

Quasi-complete, locally convex topological vector spaces V have the useful property that continuous compactly-supported V -valued functions have integrals with respect to finite Borel measures. Rather than constructing integrals as limits following [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936][Pettis 1938] characterization of integrals, which has good functorial properties...

متن کامل

Preview of vector-valued integrals

In contrast to construction of integrals as limits of Riemann sums, the Gelfand-Pettis characterization is a property no reasonable notion of integral would lack. Since this property is an irreducible minimum, this definition of integral is called a weak integral. Uniqueness of the integral is immediate when the dual V ∗ separates points, meaning that for v 6 v′ in V there is λ ∈ V ∗ with λv 6=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2012

ISSN: 1029-8479

DOI: 10.1007/jhep11(2012)114